Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49.774
Filter
1.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38567463

ABSTRACT

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Subject(s)
Autophagy , Colorectal Neoplasms , Gold , Metal Nanoparticles , Humans , Gold/chemistry , Gold/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Autophagy/drug effects , Acetylation , Microtubules/metabolism , Microtubules/drug effects , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/drug therapy , HT29 Cells , Caspases/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin/metabolism , Tubulin/chemistry
2.
ACS Sens ; 9(4): 2141-2148, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38578241

ABSTRACT

The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).


Subject(s)
Glycated Hemoglobin , Methylene Blue , Glycated Hemoglobin/analysis , Humans , Methylene Blue/chemistry , Graphite/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , Hemoglobins/analysis , Hemoglobins/chemistry , Boronic Acids/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Limit of Detection , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry
3.
ACS Sens ; 9(4): 2183-2193, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38588327

ABSTRACT

Sensitive and selective acetone detection is of great significance in the fields of environmental protection, industrial production, and individual health monitoring from exhaled breath. To achieve this goal, bimetallic Au@Pt core-shell nanospheres (BNSs) functionalized-electrospun ZnFe2O4 nanofibers (ZFO NFs) are prepared in this work. Compared to pure NFs-650 analogue, the ZFO NFs/BNSs-2 sensor exhibits a stronger mean response (3.32 vs 1.84), quicker response/recovery speeds (33 s/28 s vs 54 s/42 s), and lower operating temperature (188 vs 273 °C) toward 0.5 ppm acetone. Note that an experimental detection limit of 30 ppb is achieved, which ranks among the best cases reported thus far. Besides the demonstrated excellent repeatability, humidity-enhanced response, and long-term stability, the selectivity toward acetone is remarkably improved after BNSs functionalization. Through material characterizations and DFT calculations, all these improvements could be attributed to the boosted oxygen vacancies and abundant Schottky junctions between ZFO NFs and BNSs, and the synergistic catalytic effect of BNSs. This work offers an alternative strategy to realize selective subppm acetone under high-humidity conditions catering for the future requirements of noninvasive breath diabetes diagnosis in the field of individual healthcare.


Subject(s)
Acetone , Breath Tests , Gold , Nanofibers , Nanospheres , Platinum , Acetone/analysis , Acetone/chemistry , Nanofibers/chemistry , Gold/chemistry , Breath Tests/methods , Nanospheres/chemistry , Platinum/chemistry , Humans , Limit of Detection , Oxygen/chemistry , Electrochemical Techniques/methods
4.
Anal Methods ; 16(16): 2456-2463, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38591267

ABSTRACT

An elevated level of homocysteine (Hcy) in serum is closely related to the development of various diseases. Therefore, homocysteine has been widely employed as a biomarker in medical diagnosis and the on-site detection of homocysteine is highly desired. In this study, a truncated highly specific aptamer for homocysteine was screened and used to design a lateral flow strip (LFS) for the detection of homocysteine. The aptamer was derived from a previously reported sequence. Based on the result of molecular docking, the original sequence was subjected to truncation, resulting in a reduction of the length from 66 nt to 55 nt. Based on the truncated aptamer, the LFS was designed for the detection of homocysteine. In the presence of homocysteine, the aptamer selectively binds to it, releasing cDNA from the aptamer/cDNA duplex. This allows cDNA to bind to the capture probe immobilized on the T zone of the strip, resulting in a red signal on the T zone from gold nanoparticles (AuNPs). The strip enables the visual detection of homocysteine in 5 min. Quantitative detection can be facilitated with the aid of ImageJ software. In this mode, the linear detection range for homocysteine is within 5-50 µM, with a detection limit of 4.18 µM. The strip has been effectively utilized for the detection of homocysteine in human serum. Consequently, the combination of the truncated aptamer and the strip offers a method that is sensitive, quick, and economical for the on-site detection of homocysteine.


Subject(s)
Aptamers, Nucleotide , Gold , Homocysteine , Metal Nanoparticles , Homocysteine/blood , Homocysteine/chemistry , Homocysteine/analysis , Aptamers, Nucleotide/chemistry , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Biosensing Techniques/methods , Reagent Strips/chemistry , Molecular Docking Simulation
5.
Chem Commun (Camb) ; 60(35): 4715-4718, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38596907

ABSTRACT

Chemically conjugated branched DNA was successfully synthesized by a copper-free click reaction to construct sophisticated and higher-order polyhedral DNA nanostructures with pre-defined units in one pot, which can be used as an efficient nanoplatform to precisely organize multiple gold nanoparticles in predesigned patterns.


Subject(s)
DNA , Gold , Metal Nanoparticles , Nanostructures , DNA/chemistry , Gold/chemistry , Nanostructures/chemistry , Metal Nanoparticles/chemistry , Click Chemistry , Particle Size
6.
ACS Sens ; 9(4): 2122-2133, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38602840

ABSTRACT

Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.


Subject(s)
Circulating Tumor DNA , Gold , Graphite , Metal Nanoparticles , Pancreatic Neoplasms , Graphite/chemistry , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Circulating Tumor DNA/analysis , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Biosensing Techniques/methods , Terahertz Spectroscopy/methods , Nucleic Acid Hybridization , Limit of Detection
7.
Anal Methods ; 16(16): 2597-2605, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38618693

ABSTRACT

The highly infectious characteristics of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the necessity of sensitive and rapid nucleocapsid (N) protein-based antigen testing for early triage and epidemic management. In this study, a colorimetric and photothermal dual-mode lateral flow immunoassay (LFIA) platform for the rapid and sensitive detection of the SARS-CoV-2 N protein was developed based on gold nanorods (GNRs), which possessed tunable local surface plasma resonance (LSPR) absorption peaks from UV-visible to near-infrared (NIR). The LSPR peak was adjusted to match the NIR emission laser 808 nm by controlling the length-to-diameter ratio, which could maximize the photothermal conversion efficiency and achieve photothermal detection signal amplification. Qualitative detection of SARS-CoV-2 N protein was achieved by observing the strip color, and the limit of detection was 2 ng mL-1, while that for photothermal detection was 0.096 ng mL-1. Artificial saliva samples spiked with the N protein were analyzed with the recoveries ranging from 84.38% to 107.72%. The intra-assay and inter-assay coefficients of variation were 6.76% and 10.39%, respectively. We further evaluated the reliability of this platform by detecting 40 clinical samples collected from nasal swabs, and the results matched well with that of nucleic acid detection (87.5%). This method shows great promise in early disease diagnosis and screening.


Subject(s)
COVID-19 , Colorimetry , Coronavirus Nucleocapsid Proteins , Gold , Nanotubes , SARS-CoV-2 , Gold/chemistry , Nanotubes/chemistry , SARS-CoV-2/immunology , Colorimetry/methods , Humans , COVID-19/diagnosis , Immunoassay/methods , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/chemistry , Limit of Detection , Infrared Rays , Phosphoproteins/analysis , Phosphoproteins/chemistry , Phosphoproteins/immunology
8.
ACS Sens ; 9(4): 2110-2121, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38622791

ABSTRACT

In this study, we explore the full-spectrum capabilities of fiber-optic surface plasmon resonance (FO-SPR) for analyzing heterogeneous samples with increased comprehensiveness. Our approach involves refining a literature-derived FO-SPR model to more precisely reflect experimental data obtained using a back-reflecting sensor configuration. Key enhancements in our model include adjustments to the thickness and permittivity of the gold SPR-active layer on the FO-SPR sensor as well as improvements to the angular distribution of light within the system. We apply this optimized model to the investigation of the deposition process of a metal-organic framework (MOF), specifically ZIF-8, using FO-SPR. By closely examining the temporal variations in the FO-SPR signal during MOF layer formation, we simultaneously determine the evolving thickness and refractive index (RI) of the MOF layer, offering a dual-parameter analysis. Our results demonstrate that a full-spectrum analysis of the FO-SPR signal can extract critical information from samples exhibiting radial heterogeneity. This advancement significantly enhances the quantitative assessment of various phenomena that alter the refractive index in the sensor's domain, such as adsorption and binding processes. This work thus represents a significant step forward in the field of FO-SPR sensor technology, promising broad applications in areas requiring the precise detection and analysis of complex samples.


Subject(s)
Metal-Organic Frameworks , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Metal-Organic Frameworks/chemistry , Gold/chemistry , Fiber Optic Technology/methods , Fiber Optic Technology/instrumentation
9.
Biosensors (Basel) ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667152

ABSTRACT

This work reports on the surface functionalization of a nanomaterial supporting localized surface plasmon resonances (LSPRs) with (synthetic) thiolated oligonucleotide-based biorecognition elements, envisaging the development of selective LSPR-based DNA biosensors. The LSPR thin-film transducers are composed of noble metal nanoparticles (NPs) embedded in a TiO2 dielectric matrix, produced cost-effectively and sustainably by magnetron sputtering. The study focused on the immobilization kinetics of thiolated oligonucleotide probes as biorecognition elements, followed by the evaluation of hybridization events with the target probe. The interaction between the thiolated oligonucleotide probe and the transducer's surface was assessed by monitoring the LSPR signal with successive additions of probe solution through a microfluidic device. The device was specifically designed and fabricated for this work and adapted to a high-resolution LSPR spectroscopy system with portable characteristics. Benefiting from the synergetic characteristics of Ag and Au in the form of bimetallic nanoparticles, the Au-Ag/TiO2 thin film proved to be more sensitive to thiolated oligonucleotide binding events. Despite the successful surface functionalization with the biorecognition element, the detection of complementary oligonucleotides revealed electrostatic repulsion and steric hindrance, which hindered hybridization with the target oligonucleotide. This study points to an effect that is still poorly described in the literature and affects the design of LSPR biosensors based on nanoplasmonic thin films.


Subject(s)
Biosensing Techniques , Gold , Metal Nanoparticles , Oligonucleotides , Silver , Surface Plasmon Resonance , Titanium , Titanium/chemistry , Gold/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Oligonucleotides/chemistry , Sulfhydryl Compounds/chemistry , DNA , Nucleic Acid Hybridization
10.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667155

ABSTRACT

Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL-1 using a 0.15 nmol dm-3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Gold , Lung Neoplasms , Metal Nanoparticles , Gold/chemistry , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Humans , ErbB Receptors/genetics , Metal Nanoparticles/chemistry , Lung Neoplasms/diagnosis , Biosensing Techniques , Early Detection of Cancer
11.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667159

ABSTRACT

The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-treated biosensors. In this research, we compared antibody modification by plasma treatment and physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Consequently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed the electrochemical properties owing to electrostatic interactions. In this study, we compared the following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody (a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were 0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the plasma treatment generated many carboxyl groups and increased the number of antibody adsorption sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as a simple method for modifying various molecular recognition elements on printed carbon electrodes.


Subject(s)
Biosensing Techniques , Carbon , Electrodes , Gold , Oxygen , Carbon/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Surface Properties , Limit of Detection , Electrochemical Techniques , Adsorption
12.
Biosensors (Basel) ; 14(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38667162

ABSTRACT

The peroxidase-like behaviors of gold nanoparticles (AuNPs) have the potential to the development of rapid and sensitive colorimetric assays for specific food ingredients and contaminants. Here, using NaBH4 as a reducing agent, AuNPs with a supramolecular macrocyclic compound ß-cyclodextrin (ß-CD) capped were synthesized under alkaline conditions. Monodispersal of ß-CD@AuNPs possessed a reduction in diameter size and performed great peroxidase-like activities toward both substrates, H2O2 and TMB. In the presence of H2O2, the color change of TMB oxidization to oxTMB was well-achieved using ß-CD@AuNPs as the catalyst, which was further employed to develop colorimetric assays for ascorbic acid, with a limit of detection as low as 0.2 µM in ddH2O. With the help of the host-guest interaction between ß-CD and adamantane, AuNPs conjugated with nanobodies to exhibit peroxidase-like activities and specific recognition against Salmonella Typhimurium simultaneously. Based on this bifunctional bioprobe, a selective and sensitive one-step colorimetric assay for S. Typhimurium was developed with a linear detection from 8.3 × 104 to 2.6 × 108 CFU/mL and can be provided to spiked lettuce with acceptable recoveries of 97.31% to 103.29%. The results demonstrated that the excellent peroxidase-like behaviors of ß-CD@AuNPs can be applied to develop a colorimetric sensing platform in the food industry.


Subject(s)
Ascorbic Acid , Colorimetry , Gold , Metal Nanoparticles , beta-Cyclodextrins , Metal Nanoparticles/chemistry , beta-Cyclodextrins/chemistry , Gold/chemistry , Biosensing Techniques , Peroxidase , Hydrogen Peroxide , Salmonella typhimurium , Salmonella , Limit of Detection
13.
Biosensors (Basel) ; 14(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38667165

ABSTRACT

The exploration into nanomaterial-based nonenzymatic biosensors with superb performance in terms of good sensitivity and anti-interference ability in disease marker monitoring has always attained undoubted priority in sensing systems. In this work, we report the design and synthesis of a highly active nanocatalyst, i.e., palladium and platinum nanoparticles (Pt&Pd-NPs) decorated ultrathin nanoporous gold (NPG) film, which is modified on a homemade graphene paper (GP) to develop a high-performance freestanding and flexible nanohybrid electrode. Owing to the structural characteristics the robust GP electrode substrate, and high electrochemically catalytic activities and durability of the permeable NPG support and ultrafine and high-density Pt&Pd-NPs on it, the resultant Pt&Pd-NPs-NPG/GP electrode exhibits excellent sensing performance of low detection limitation, high sensitivity and anti-interference capability, good reproducibility and long-term stability for the detection of small molecular biomarkers hydrogen peroxide (H2O2) and glucose (Glu), and has been applied to the monitoring of H2O2 in different types of live cells and Glu in body fluids such as urine and fingertip blood, which is of great significance for the clinical diagnosis and prognosis in point-of-care testing.


Subject(s)
Biomarkers , Biosensing Techniques , Electrochemical Techniques , Gold , Graphite , Metal Nanoparticles , Palladium , Platinum , Graphite/chemistry , Gold/chemistry , Platinum/chemistry , Palladium/chemistry , Metal Nanoparticles/chemistry , Biomarkers/urine , Humans , Hydrogen Peroxide , Alloys/chemistry , Glucose/analysis , Electrodes , Paper
14.
Biosensors (Basel) ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667176

ABSTRACT

The identification and quantification of biomarkers with innovative technologies is an urgent need for the precise diagnosis and follow up of human diseases. Body fluids offer a variety of informative biomarkers, which are traditionally measured with time-consuming and expensive methods. In this context, lateral flow tests (LFTs) represent a rapid and low-cost technology with a sensitivity that is potentially improvable by chemiluminescence biosensing. Here, an LFT based on gold nanoparticles functionalized with antibodies labeled with the enzyme horseradish peroxidase is combined with a lensless biosensor. This biosensor comprises four Silicon Photomultipliers (SiPM) coupled in close proximity to the LFT strip. Microfluidics for liquid handling complete the system. The development and the setup of the biosensor is carefully described and characterized. C-reactive protein was selected as a proof-of-concept biomarker to define the limit of detection, which resulted in about 0.8 pM when gold nanoparticles were used. The rapid readout (less than 5 min) and the absence of sample preparation make this biosensor promising for the direct and fast detection of human biomarkers.


Subject(s)
Biomarkers , Biosensing Techniques , Gold , Metal Nanoparticles , Biomarkers/analysis , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Luminescent Measurements , C-Reactive Protein/analysis , Horseradish Peroxidase , Limit of Detection
15.
Biosensors (Basel) ; 14(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38667174

ABSTRACT

A highly sensitive and selective electrogenerated chemiluminescence (ECL) biosensor was developed for the determination of matrix metalloproteinase 3 (MMP-3) in serum via the target-induced cleavage of an oligopeptide. One ECL probe (named as Ir-peptide) was synthesized by covalently linking a new cyclometalated iridium(III) complex ([(3-pba)2Ir(bpy-COOH)](PF6)) (3-pba = 3-(2-pyridyl) benzaldehyde, bpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid) with an oligopeptide (CGVPLSLTMGKGGK). An ECL biosensor was fabricated by firstly casting Nafion and gold nanoparticles (AuNPs) on a glassy carbon electrode and then self-assembling both of the ECL probes, 6-mercapto-1-hexanol and zwitterionic peptide, on the electrode surface, from which the AuNPs could be used to amplify the ECL signal and Ir-peptide could serve as an ECL probe to detect the MMP-3. Thanks to the MMP-3-induced cleavage of the oligopeptide contributing to the decrease in ECL intensity and the amplification of the ECL signal using AuNPs, the ECL biosensor could selectively and sensitively quantify MMP-3 in the concentration range of 10-150 ng·mL-1 and with both a limit of quantification (26.7 ng·mL-1) and a limit of detection (8.0 ng·mL-1) via one-step recognition. In addition, the developed ECL biosensor showed good performance in the quantization of MMP-3 in serum samples, with a recovery of 92.6% ± 2.8%-105.6% ± 5.0%. An increased level of MMP-3 was found in the serum of rheumatoid arthritis patients compared with that of healthy people. This work provides a sensitive and selective biosensing method for the detection of MMP-3 in human serum, which is promising in the identification of patients with rheumatoid arthritis.


Subject(s)
Biosensing Techniques , Gold , Luminescent Measurements , Matrix Metalloproteinase 3 , Metal Nanoparticles , Oligopeptides , Humans , Matrix Metalloproteinase 3/blood , Gold/chemistry , Metal Nanoparticles/chemistry , Luminescence , Limit of Detection , Electrodes , Electrochemical Techniques
16.
Biosensors (Basel) ; 14(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667195

ABSTRACT

Tyrosinase (TYR) emerges as a key enzyme that exerts a regulatory influence on the synthesis of melanin, thereby assuming the role of a critical biomarker for the detection of melanoma. Detecting the authentic concentration of TYR in the skin remains a primary challenge. Distinguished from ex vivo detection methods, this study introduces a novel sensor platform that integrates a microneedle (MN) biosensor with surface-enhanced Raman spectroscopy (SERS) technology for the in situ detection of TYR in human skin. The platform utilized dopamine (DA)-functionalized gold nanoparticles (Au NPs) as the capturing substrate and 4-mercaptophenylboronic acid (4-MPBA)-modified silver nanoparticles (Ag NPs) acting as the SERS probe. Here, the Au NPs were functionalized with mercaptosuccinic acid (MSA) for DA capture. In the presence of TYR, DA immobilized on the MN is preferentially oxidized to dopamine quinone (DQ), a process that results in a decreased density of SERS probes on the platform. TYR concentration was detected through variations in the signal intensity emitted by the phenylboronic acid. The detection system was able to evaluate TYR concentrations within a linear range of 0.05 U/mL to 200 U/mL and showed robust anti-interference capabilities. The proposed platform, integrating MN-based in situ sensing, SERS technology, and TYR responsiveness, holds significant importance for diagnosing cutaneous melanoma.


Subject(s)
Biosensing Techniques , Gold , Metal Nanoparticles , Monophenol Monooxygenase , Silver , Spectrum Analysis, Raman , Humans , Metal Nanoparticles/chemistry , Gold/chemistry , Silver/chemistry , Dopamine/analysis , Needles , Melanoma/diagnosis , Skin
17.
Biosensors (Basel) ; 14(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667191

ABSTRACT

Exosomes constitute an emerging biomarker for cancer diagnosis because they carry multiple proteins that reflect the origins of the parent cell. The highly sensitive detection of exosomes is a crucial prerequisite for the diagnosis of cancer. In this study, we report an exosome detection system based on quantum weak value amplification (WVA). The WVA detection system consists of a reflection detection light path and a Zr-ionized biochip. Zr-ionized biochips effectively capture exosomes through the specific interaction between zirconium dioxide and the phosphate groups on the lipid bilayer of exosomes. Aptamer-modified gold nanoparticles (Au NPs) are then used to specifically recognize proteins on exosomes to enhance the detection signal. The sensitivity and resolution of the detection system are 2944.07 nm/RIU and 1.22 × 10-5 RIU, respectively. The concentration of exosomes can be directly quantified by the WVA system, ranging from 105-107 particles/mL with the detection limit of 3 × 104 particles/mL. The use of Au NPs-EpCAM for the specific enhancement of breast cancer MDA-MB-231 exosomes is demonstrated. The results indicate that the WVA detection system can be a promising candidate for the detection of exosomes as tumor markers.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Exosomes , Gold , Metal Nanoparticles , Humans , Breast Neoplasms/diagnosis , Female , Gold/chemistry , Metal Nanoparticles/chemistry , Biomarkers, Tumor , Cell Line, Tumor , Limit of Detection , Zirconium/chemistry
18.
Biosensors (Basel) ; 14(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38667200

ABSTRACT

Organic electrochemical transistors appear as an alternative for relatively low-cost, easy-to-operate biosensors due to their intrinsic amplification. Herein, we present the fabrication, characterization, and validation of an immuno-detection system based on commercial sensors using gold electrodes where no additional surface treatment is performed on the gate electrode. The steady-state response of these sensors has been studied by analyzing different semiconductor organic channels in order to optimize the biomolecular detection process and its the application to monitoring human IgG levels due to SARS-CoV-2 infections. Detection levels of up to tens of µgmL-1 with sensitivities up to 13.75% [µg/mL]-1, concentration ranges of medical relevance in seroprevalence studies, have been achieved.


Subject(s)
Biosensing Techniques , COVID-19 , Electrochemical Techniques , Immunoglobulin G , SARS-CoV-2 , Transistors, Electronic , Humans , Biosensing Techniques/instrumentation , Immunoglobulin G/blood , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/blood , Gold/chemistry , Electrodes , Antibodies, Viral , Immunoassay
19.
Anal Chem ; 96(15): 6065-6071, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38569047

ABSTRACT

The conventional lateral flow immunoassay (LFIA) method using colloidal gold nanoparticles (Au NPs) as labeling agents faces two inherent limitations, including restricted sensitivity and poor quantitative capability, which impede early viral infection detection. Herein, we designed and synthesized CsPbBr3 perovskite quantum dot-based composite nanoparticles, CsPbBr3@SiO2@Fe3O4 (CSF), which integrated fluorescence detection and magnetic enrichment properties into LFIA technology and achieved rapid, sensitive, and convenient quantitative detection of the SARS-CoV-2 virus N protein. In this study, CsPbBr3 served as a high-quantum-yield fluorescent signaling probe, while SiO2 significantly enhanced the stability and biomodifiability of CsPbBr3. Importantly, the SiO2 shell shows relatively low absorption or scattering toward fluorescence, maintaining a quantum yield of up to 74.4% in CsPbBr3@SiO2. Assembly of Fe3O4 nanoparticles mediated by PEI further enhanced the method's sensitivity and reduced matrix interference through magnetic enrichment. Consequently, the method achieved a fluorescent detection range of 1 × 102 to 5 × 106 pg·mL-1 after magnetic enrichment, with a limit of detection (LOD) of 58.8 pg·mL-1, representing a 13.3-fold improvement compared to nonenriched samples (7.58 × 102 pg·mL-1) and a 2-orders-of-magnitude improvement over commercial colloidal gold kits. Furthermore, the method exhibited 80% positive and 100% negative detection rates in clinical samples. This approach holds promise for on-site diagnosis, home-based quantitative tests, and disease procession evaluation.


Subject(s)
Metal Nanoparticles , Silicon Dioxide , Gold , Fluorescent Dyes , Immunoassay/methods , Gold Colloid
20.
Langmuir ; 40(15): 8248-8259, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578277

ABSTRACT

A model bilayer of the outer membrane (OM) of Gram-negative bacteria, composed of lipid A and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), was assembled on the ß-Tg modified gold (111) single crystal surface using a combination of Langmuir-Blodgett and Langmuir-Schaefer transfer. Electrochemical and spectroscopic methods were employed to study the properties of the model bilayer and its interaction with polymyxin. The model bilayer is stable on the gold surface in the transmembrane potential region between 0.0 and -0.7 V. The presence of Mg2+ coordinates with the phosphate and carboxylate groups in the leaflet of lipid A and stabilizes the structure of the model bilayer. Polymyxin causes the model bilayer leakage and damage in the transmembrane potential region between 0.2 and -0.4 V. At transmembrane potentials lower than -0.5 V, polymyxin does not affect the membrane integrity. Polymyxin binds to the phosphate and carboxylate groups in lipid A molecules and causes the increase of the tilt angle of acyl chains and the decrease of the tilt of the C═O bond. The results in this paper indicate that the antimicrobial activity of polymyxin depends on the transmembrane potential at the model bilayer and provides useful information for the development of new antibiotics.


Subject(s)
Anti-Bacterial Agents , Lipid Bilayers , Anti-Bacterial Agents/pharmacology , Lipid Bilayers/chemistry , Lipid A , Polymyxins/pharmacology , Gram-Negative Bacteria , Gold/chemistry , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...